Lecture - 2: Force Workshop on Mechanics and Python

Vikram Vyas

The Ajit Foundation, Bikaner

16 - 19 May 2019

References

This lecture is based on

Chapter 8 and Chapter 9 of The Feynman Lectures in Physics, Volume 1

How to describe the change in velocity at a given time t

Acceleration

Rate of change of velocity

$$
a(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} \equiv \frac{dv}{dt}
$$

Acceleration is the second derivative of the position

$$
a(t) = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) \equiv \frac{d^2x}{dt^2}
$$

Rate of change of acceleration

 \triangleright We can define the rate of change of acceleration in a similar manner

$$
\frac{da}{dt} = \lim_{\Delta t \to 0} \frac{a(t + \Delta t) - a(t)}{\Delta t}
$$

 \blacktriangleright It is an interesting fact about our description of nature that rate of change of acceleration is not required in formulating the laws of motion

Reference Frame

Laboratory as a reference frame

We will start with a rough idea that we are observing a motion in a laboratory. In this laboratory we have means of measuring position and time of a particle. We have clocks and measuring rods. We will call such a laboratory a reference frame.

One-dimensional coordinate system

A coordinate system is a way of labeling the points of the space

Figure: An example of one dimensional coordinate system

Newton's second law of motion

The motion of a particle in one dimension when observed from special reference frames satisfies the equation

$$
F_x = \frac{d}{dt}(mv_x) = \frac{dp_x}{dt} = m\frac{dv_x}{dt} = m\frac{d^2x}{dt^2},
$$

where m is the mass of the particle and is a measure of the resistance of the particle to change its momentum. F_x is the force acting on the particle.

Force

Forces are given by the laws of nature

- \triangleright $F_{\text{spring}}(x) = -k \times x$, where k is a constant we determine from experiments
- Ffriction $(V_x) = -\gamma \frac{dx}{dt}$, where γ is a constant we determine from experiments
- \blacktriangleright These are examples of approximate laws, they are consequence of fundmental forces acting on many many particles.

Mass on the spring

Figure: Mass on the spring

Equation of motion

$$
-x = \frac{d^2x}{dt^2}
$$

Solving the equation of motion $-x = \frac{d^2x}{dt^2}$ $dt²$

We want to solve this equation starting with $x = 1.0$ and $v_x = 0$. We are going to check our solution by measuring the position at intervals of ϵ .

Filling up the table

 \blacktriangleright

I

 \triangleright Where will the particle be at a small time interval $\Delta t = \epsilon$ latter?

$$
x\left(\epsilon\right)=x\left(0\right)+v_{x}\left(0\right)\epsilon=1.0+0.0\epsilon=1.0
$$

 \blacktriangleright Where will the particle be at $t = 2\epsilon$?

$$
x(2\epsilon) = x(\epsilon) + v_x(\epsilon) \epsilon = 1.0 + v_x(\epsilon) \epsilon
$$

But we don't know $v(\epsilon)$. We are stuck.

Table: Motion of the mass on a spring

Dynamical meaning of the equation: $-x = \frac{dv}{dt}$ dt

Equation of motion allows us to calculate the new velocity

$$
v(\epsilon) = v(0) + a(0) \epsilon
$$

= v(0) + (-x(0))\epsilon

x	v
1.00	0.000
1.00	-0.100
0.990	-0.200
0.970	0.299

Table: Motion of the mass on a spring with $\epsilon = 0.1$