Lecture - 1: Motion Workshop on Mechanics and Python

#### Vikram Vyas

The Ajit Foundation, Bikaner

16 - 19 May 2019

### References

This lecture is based on Chapter 8 of The Feynman Lectures in Physics, Volume 1

### Description of motion

- We would like to find the laws governing the changes that take place in a body as time goes on.
- We will start with some solid object like a cycle. We will mark the head of the cyclist and call it a point and follow the motion of the point in time.

### Description of motion along a line

- Let us consider even more simpler situation in which our cycle moves along a straight line only.
- Then we can describe the motion by giving the position of our marker, the point, on the straight line as time flows.



### Description of motion as a table

| t (min) | s (ft) |
|---------|--------|
| 0       | 0      |
| 1       | 120    |
| 2       | 400    |
| 3       | 900    |
| 4       | 950    |
| 5       | 960    |
| 6       | 1300   |
| 7       | 1800   |
| 8       | 2350   |
| 9       | 2400   |

Table: Position of the cycle at different instances of time

### Description of motion as a graph



Figure: Motion of the cycle as a graph of distance versus time

### Another view of the motion



Figure: Motion on the line and its graph as a function of time

## A formula describing a motion

- If we know the laws of nature that describe the motion of a particle in one dimension, then we should be able to give the position of the particle at every instant of time.
- We can write this as

$$x=f\left(t\right)$$

# A falling object

Using Newton's laws of motion, and knowing the initial condition of the particle, we can obtain a formula that describes the motion of a falling object

$$S = \frac{1}{2}gt^2; \quad g = 9.8\frac{m}{s^2}$$
 (1)



Figure: Falling body

### Space and Time

- Our description of motion is based on some intuitive assumptions about space and time.
- These assumptions have to be reexamined when:
  - Particles are moving at a speed comparable to the speed of light.
  - When the size of object is "small".

#### How fast is the particle moving?

- We have an intuitive notion of a particle moving slow or fast.
- For falling boy we can "see" that it moves slowly first and then moves faster.



Let us define the speed at time t as:

$$V(t) = rac{S(t + \Delta t) - S(t)}{\Delta t}$$

- What is  $\Delta t$ ?
- Since speed is changing  $\Delta t$  should be "small".
- Will speed at time t depend on our choice of  $\Delta t$ ?

Speed at t = 0 for a falling body:  $S = \frac{1}{2}gt^2$ 

| We will | measure | our | speed | to | the | precision | of | five | decin | ۱al |
|---------|---------|-----|-------|----|-----|-----------|----|------|-------|-----|
| places  |         |     |       |    |     |           |    |      |       |     |

| $\Delta t$ | $V(0) = rac{S(0+\Delta t)-S(0)}{\Delta t}$ |
|------------|---------------------------------------------|
| 0.01       | 0.04900                                     |
| 0.001      | 0.00490                                     |
| 0.0001     | 0.00049                                     |
| 0.00001    | 0.00005                                     |
| 0.000001   | 0.00000                                     |
| 0.0000001  | 0.00000                                     |

V(0)

For  $\Delta t < 1 \times 10^{-5}$  the speed V (0) is independent of  $\Delta t$  till five decimal places.

### Speed at t = 0 with increased precision

| • | Let us measu | re our speed to the prec                    | ision of <b>six</b> decimal places |
|---|--------------|---------------------------------------------|------------------------------------|
|   | $\Delta t$   | $V(0) = rac{S(0+\Delta t)-S(0)}{\Delta t}$ |                                    |
|   | 0.001        | 0.004900                                    |                                    |
|   | 0.0001       | 0.000490                                    |                                    |
|   | 0.00001      | 0.000049                                    |                                    |
|   | 0.000001     | 0.000005                                    |                                    |
|   | 0.0000001    | 0.000000                                    |                                    |
|   | 0.0000001    | 0.000000                                    |                                    |

V(0)

For  $\Delta t < 1 \times 10^{-6}$  the speed V (0) is independent of  $\Delta t$  till six decimal places.

## Speed from the formula

The results of our numerical experiments can be obtained for  $S=\frac{1}{2}gt^2$ 

$$V(t) = \frac{S(t + \Delta t) - S(t)}{\Delta t}$$
$$V(t) = \frac{\frac{1}{2}g\left(\left(t^2 + 2t\Delta t + \Delta t^2\right) - t^2\right)}{\Delta t}$$
$$V(t) = gt + \frac{1}{2}g\Delta t$$

### Speed as a Derivative

#### v(t) the speed at time t

$$v(t) = \lim_{\Delta t \to 0} \frac{S(t + \Delta t) - S(t)}{\Delta t} \equiv \frac{dS}{dt}$$

## Table of Velocity

We want to describe the motion assuming we know the speed of the particle at every time.



We want to know what is S (4), where the particle will be at 4sec? Finding the position from the velocity

From our definition of velocity, with  $\Delta t = 1$ sec, and assuming S(0) = 0

$$S(1) = S(0) + v(0)\Delta t = 0$$
  

$$S(2) = S(1) + v(1)\Delta t = 0 + 9.8$$
  

$$S(3) = S(2) + v(2)\Delta t = 9.8 + 19.6 = 29.4$$
  

$$S(4) = S(3) + v(3)\Delta t = 29.4 + 39.2 = 68.6$$

Check

$$S(4) = \frac{1}{2}9.8 \times 4^2 = 78.4 \neq 68.6!$$

Velocity is changing and Δt = 1 is too large!

#### Distance as a sum

$$S(4) = v(0) \Delta t + v(1) \Delta t + v(2) \Delta t + v(3) \Delta t$$
  
 $S(4) = \sum_{i=1}^{4} v(i-1) \Delta t$ 

In general

$$S(T) = \sum_{i=1}^{N} v(i-1)\Delta t; \quad T = N\Delta t$$

### Distance as a sum: $\Delta t ightarrow 0$

To take into account that the velocity is changing in the interval Δt we must make Δt smaller and smaller

| $\Delta t$ | <i>S</i> (4) |  |  |  |
|------------|--------------|--|--|--|
| 1.0        | 68.6         |  |  |  |
| 0.001      | 78.380       |  |  |  |
| 0.0001     | 78.398       |  |  |  |
| 0.00001    | 78.399       |  |  |  |
| 0.000001   | 78.400       |  |  |  |

#### Distance is a definite integral of v(t)

$$S(T) = \lim_{\Delta t \to 0} \sum_{i=1}^{N} v(i-1)\Delta t; \quad T = N\Delta t$$
$$S(T) \equiv \int_{0}^{T} v(t) dt$$