Lecture - 1: Motion Workshop on Mechanics and Python

Vikram Vyas

The Ajit Foundation, Bikaner

16 - 19 May 2019

References

This lecture is based on Chapter 8 of The Feynman Lectures in Physics, Volume 1

Description of motion

- \triangleright We would like to find the laws governing the changes that take place in a body as time goes on.
- \triangleright We will start with some solid object like a cycle. We will mark the head of the cyclist and call it a point and follow the motion of the point in time.

Description of motion along a line

- \blacktriangleright Let us consider even more simpler situation in which our cycle moves along a straight line only.
- \triangleright Then we can describe the motion by giving the position of our marker, the point, on the straight line as time flows.

Description of motion as a table

Table: Position of the cycle at different instances of time

Description of motion as a graph

Figure: Motion of the cycle as a graph of distance versus time

Another view of the motion

Figure: Motion on the line and its graph as a function of time

A formula describing a motion

- If we know the laws of nature that describe the motion of a particle in one dimension, then we should be able to give the position of the particle at every instant of time.
- \blacktriangleright We can write this as

$$
x=f\left(t\right)
$$

A falling object

 \triangleright Using Newton's laws of motion, and knowing the initial condition of the particle, we can obtain a formula that describes the motion of a falling object

$$
S = \frac{1}{2}gt^2; \quad g = 9.8 \frac{m}{s^2}
$$
 (1)

Figure: Falling body

Space and Time

- \triangleright Our description of motion is based on some intuitive assumptions about space and time.
- \blacktriangleright These assumptions have to be reexamined when:
	- **Particles are moving at a speed comparable to the speed of** light.
	- \triangleright When the size of object is "small".

How fast is the particle moving?

- \triangleright We have an intuitive notion of a particle moving slow or fast.
- \triangleright For falling boy we can "see" that it moves slowly first and then moves faster.

Speed

Let us define the speed at time t as:

$$
V(t) = \frac{S(t + \Delta t) - S(t)}{\Delta t}
$$

- \blacktriangleright What is Δt ?
- \triangleright Since speed is changing Δt should be "small".
- \triangleright Will speed at time t depend on our choice of Δt ?

Speed at $t=0$ for a falling body: $S=\frac{1}{2}$ $\frac{1}{2}gt^2$

> \triangleright We will measure our speed to the precision of five decimal places

 $V(0)$

For $\Delta t < 1 \times 10^{-5}$ the speed $V\left(0\right)$ is independent of Δt till five decimal places.

Speed at $t = 0$ with increased precision

$V(0)$

For $\Delta t < 1 \times 10^{-6}$ the speed $V\left(0 \right)$ is independent of Δt till six decimal places.

Speed from the formula

The results of our numerical experiments can be obtained for $S = \frac{1}{2}$ $\frac{1}{2}gt^2$

 \blacktriangleright $V(t) = \frac{S(t + \Delta t) - S(t)}{\Delta t}$ \blacktriangleright $V(t) =$ 1 $\frac{1}{2}g((t^2+2t\Delta t+\Delta t^2)-t^2)$ ∆t \blacktriangleright $V(t) = gt + \frac{1}{2}$ $\frac{1}{2}g\Delta t$

Speed as a Derivative

$v(t)$ the speed at time t

$$
v(t) = \lim_{\Delta t \to 0} \frac{S(t + \Delta t) - S(t)}{\Delta t} \equiv \frac{dS}{dt}
$$

Table of Velocity

 \triangleright We want to describe the motion assuming we know the speed of the particle at every time.

 \triangleright We want to know what is $S(4)$, where the particle will be at 4sec?

Finding the position from the velocity

 \triangleright From our definition of velocity, with $\Delta t = 1$ sec, and assuming $S(0) = 0$

$$
S(1) = S(0) + v(0)\Delta t = 0
$$

\n
$$
S(2) = S(1) + v(1)\Delta t = 0 + 9.8
$$

\n
$$
S(3) = S(2) + v(2)\Delta t = 9.8 + 19.6 = 29.4
$$

\n
$$
S(4) = S(3) + v(3)\Delta t = 29.4 + 39.2 = 68.6
$$

 \blacktriangleright Check

$$
S(4) = \frac{1}{2}9.8 \times 4^2 = 78.4 \neq 68.6!
$$

 \triangleright Velocity is changing and $\Delta t = 1$ is too large!

Distance as a sum

 \blacktriangleright

 \blacktriangleright

$$
S(4) = v(0) \Delta t + v(1) \Delta t + v(2) \Delta t + v(3) \Delta t
$$

$$
S(4) = \sum_{i=1}^{4} v(i-1) \Delta t
$$

 \blacktriangleright In general

$$
S(T) = \sum_{i=1}^{N} v(i-1) \Delta t; \quad T = N \Delta t
$$

Distance as a sum: $\Delta t \rightarrow 0$

 \blacktriangleright To take into account that the velocity is changing in the interval Δt we must make Δt smaller and smaller

Distance is a definite integral of $v(t)$

$$
S(T) = \lim_{\Delta t \to 0} \sum_{i=1}^{N} v(i-1) \Delta t; \quad T = N \Delta t
$$

$$
S(T) \equiv \int_{0}^{T} v(t) dt
$$